Some Problems Related to Completely Monotone Positive Definite Functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper deals with several problems related to functions of the class \({\mathcal C}{\mathcal M}\) of completely monotone functions and functions of the class Φ(E) of positive definite functions on a real linear space E. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function x−μ (x2+ 1)−ν. Theorem 2 states that if fC(0, + ∞) and δ ∈ ℝ, then

\(f\left( x \right) - {a^\delta }f\left( {ax} \right)\; \in \;{\mathcal C}{\mathcal M}\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if \( - \delta f\left( x \right) - xf\prime \left( x \right)\; \in \;{\cal C}{\cal M}\). A similar result for functions in Φ(E) is obtained in Theorem 9: if ε ∈ ℝ and a function h:[0, + ∞) → ℝ is continuous on [0, +œ) and differentiable on the interval (0, + œ) and satisfies the condition xh′ (x) → 0 as x → +0, then

\(h\left( {\rho \left( u \right)} \right) - {a^{ - \varepsilon }}h\left( {a\rho \left( u \right)} \right)\; \in \;{\rm{\Phi }}\left( E \right)\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if ψε(p(u)) ∈ Φ(E), where ipε(x):= εh(x) − xh(x) for x > 0 and ψε(0): = εh(0). Here p is a nonnegative homogeneous function on E and p(u) ≢ 0. It is proved (Example 6) that: (1) e−α∥u (1 − β∥u∥) ∈ Φ(ℝm) if and only if −α ≤ β ≤ a/m;(2) e−α∥u∥2 (1 − β∥u2) ∈ Φ(ℝm) if and only if 0 ≤ β ≤ 2α/m. Here ∥u∥ is the Euclidean norm on ℝm. Theorem 11 deals with the case of radial positive definite functions hμ,ν.

About the authors

V. P. Zastavnyi

Donetsk National University

Author for correspondence.
Email: zastavn@rambler.ru
Ukraine, Donetsk, 340055

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.