Distance-Regular Shilla Graphs with b2 = c2
- Authors: Makhnev A.A.1,2, Nirova M.S.3
-
Affiliations:
- Krasovskii Institute of Mathematics and Mechanics
- Yeltsin Ural Federal University
- Berbekov State University of Kabardino-Balkaria
- Issue: Vol 103, No 5-6 (2018)
- Pages: 780-792
- Section: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150879
- DOI: https://doi.org/10.1134/S0001434618050103
- ID: 150879
Cite item
Abstract
A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigen-value θ1 equal to a3. For a Shilla graph, let us put a = a3 and b = k/a. It is proved in this paper that a Shilla graph with b2 = c2 and noninteger eigenvalues has the following intersection array:
\(\left\{ {\frac{{{b^2}\left( {b - 1} \right)}}{2},\frac{{\left( {b - 1} \right)\left( {{b^2} - b + 2} \right)}}{2},\frac{{b\left( {b - 1} \right)}}{4};1,\frac{{b\left( {b - 1} \right)}}{4},\frac{{b{{\left( {b - 1} \right)}^2}}}{2}} \right\}\)![]()
If Γ is a Q-polynomial Shilla graph with b2 = c2 and b = 2r, then the graph Γ has intersection array \(\left\{ {2tr\left( {2r + 1} \right),\left( {2r + 1} \right)\left( {2rt + t + 1} \right),r\left( {r + t} \right);1,r\left( {r + t} \right),t\left( {4{r^2} - 1} \right)} \right\}\)![]()
and, for any vertex u in Γ, the subgraph Γ3(u) is an antipodal distance-regular graph with intersection array \(\left\{ {t\left( {2r + 1} \right),\left( {2r - 1} \right)\left( {t + 1} \right),1;1,t + 1,t\left( {2r + 1} \right)} \right\}\)![]()
The Shilla graphs with b2 = c2 and b = 4 are also classified in the paper.Keywords
About the authors
A. A. Makhnev
Krasovskii Institute of Mathematics and Mechanics; Yeltsin Ural Federal University
Author for correspondence.
Email: makhnev@imm.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg
M. S. Nirova
Berbekov State University of Kabardino-Balkaria
Email: makhnev@imm.uran.ru
Russian Federation, Nalchik
Supplementary files
